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Abstract. The behaviour of the finite-temperatureC-function, defined by Neto and Fradkin (1993
Nucl. Phys.B 400525), is analysed within ad -dimensional exactly solvable lattice model, recently
considered by Vojta (1996Phys. Rev.B 53 710), which is of the same universality class as the
quantum nonlinear O(n) sigma model in the limitn → ∞. The scaling functions ofC for the
casesd = 1 (absence of long-range order),d = 2 (existence of a quantum critical point),d = 4
(existence of a line of finite-temperature critical points that ends up with a quantum critical point)
are derived and analysed. The locations of regions whereC is monotonically increasing (which
depend significantly ond) are exactly determined. The results are interpreted within the finite-size
scaling theory that has to be modified ford = 4.

1. Introduction

The original ZamolodchikovC-theorem is related to zero-temperature quantum systems.
It establishes the existence of a dimensionless functionC of the coupling constants with
monotonic properties along the renormalization group trajectories [1]. The assumptions
presented in the proof are related with the energy–momentum conservation, the rotational
and translational symmetries, and positivity in a two-dimensional (2D) quantum field theory.
The behaviour of theC-function reflects the role of the quantum fluctuations and it is useful in
determining the qualitative features of the theory away from the criticality. At the fixed points
it takes the value of the central charge of the corresponding conformal field theory. Since
the basic assumptions underlying theC-theorem are not only specific to two dimensions,
considerable interest exists in generalization of the Zamolodchikov result for dimensionalities
different from two as well as for nonzero temperatures [2–6]. Earlier efforts (see [2] and
references therein) have been devoted to finding a version of theC-theorem valid in four
dimensions. There the approach was based on a careful investigation of the form of the trace
of the energy–momentum tensor, written in terms of finite local composite operators. Despite
being able to write expressions for the Zamolodchikov equations for theC-function, similar to
the case of two dimensions, it turns out that it is not possible to demonstrate the monotonicity
property. Let us note also the fact that the 3D analogue of central charge [7] is not equivalent
to the universal number characterizing the size dependence of the free energy at the critical
point [4] (which is always the case in 2D conformal field theory). This fact indicates that a
straightforward generalization of the ZamolodchikovC-theorem is not to be expected for a
generald. See also [5], where different approaches to the problem have been offered and where
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7058 D M Danchev and N S Tonchev

it was shown that no direct relations exist between the ‘finite-temperatureC-theorem’ and the
ZamolodchikovC-theorem at zero temperature. In the present study an approach, proposed
by Netto and Fradkin [3] (in some sense a thermodynamic one), for finding a candidate for the
C-function will be considered. In [3] the following dimensionless function is defined:

C(β, g, a|d) = −βd+1 vd

n(d)
[f (β, g, a|d)− f (∞, g, a|d)] (1.1)

whereβ is the inverse temperature (β = 1/T ) with the Boltzman constantkB = 1,g is a set of
dimensionful coupling constants,f (∞, g, a|d) ≡ E0(g, a|d) is the zero-temperature energy
density, i.e. the energy of the ‘infinite’ in the inverse temperature system,f (β, g, a|d) is the full
free-energy density (per unit volume) of the system, anda is the characteristic length scale of
the lattice. Heren(d) is a positive real number (which depends only on the dimensionalityd of
the system) andv is the characteristic velocity (e.g. the velocity of quasiparticles) in the system.
The functionC(β, g, a|d) is considered to be thed-dimensional nonzero temperature extension
of the ZamolodchikovC-function. It is supposed to bepositive, and, in the regions where the
quantum fluctuations dominate, amonotonically increasing function of the temperature. In [3]
the numbersn(d) = 0((d + 1)/2)ζ(d + 1)/π(d+1)/2 for bosons (ζ(x) is the Riemann zeta
function,0(x) is the gamma function) andn(d) = 0((d + 1)/2)ζ(d + 1)(2− 21−d)/π(d+1)/2

for fermions have been suggested. Obviously, the exact choice ofn(d) does not effect the
monotonicity properties of theC-function. Functions analogous to the one defined in (1.1)
have also been discussed in [4–6].

For a generald the existence of phase transitions in the system, as well as the interplay
between the quantum and classical fluctuations, makes the analysis of the behaviour of the
C-function difficult from a general point of view. That is why, for anyd 6= 1 the properties of
C have been considered on the examples of concrete models: the free massive field theories
(for anyd) [3], the Ising model in a transverse field (ford = 1) [3] and the quantum nonlinear
sigma model (QNLσM) in the limit N → ∞ andd = 2 [3, 4]. (Recently, the value of the
C-function at the critical point as a function ofd , 1 < d < 3, has been calculated in [6] for
that model.)

In the present paper we will consider thed-dependence of the monotonicity property of
theC-function within the framework of an exactly solvable lattice model. We will explicitly
demonstrate the crucial role that the existence of a quantum (T = 0) and/or classical (T 6= 0)
critical points plays for the behaviour ofC in different regions of the phase diagram in the
plane temperature—the parameter controlling the quantum fluctuations.

The paper is organized as follows. In section 2 we briefly describe the model and in
section 3 present the basic exact analytical expressions for the free energy of the bulk system
at nonzero temperature. Section 4 contains the analysis of the behaviour of theC-function
in dimensions one, two and four in different regimes of the parametric space of the model.
Section 5 presents a finite-size scaling (FSS) interpretation of the results. The paper closes
with concluding remarks given in section 6.

2. The model

The model we consider describes a magnetic ordering due to the interaction of quantum
spins. It dates back to the work of G Obermair (1972) [8], in which a canonical quantization
for a dynamical version of the spherical model was proposed. Later Srednicki [9], using
the Feynman-path integral formalism, extracted from a 2D mean spherical model a quantum
mechanical Hamiltonian which is a 1D version of the model proposed by Obermair. Henkel
and Hoeger [10] generalized that result tod dimensions. Recently, [11] has renewed the
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interest in this scheme in the context of quantum phase transitions at zero temperature. The
Hamiltonian has the following form [11]:

H = 1

2
g
∑
`

P2
` −

1

2

∑
``′
J``′S`S`′ +

µ

2

∑
`

S2
` (2.1)

where S` are spin operators at sitè, the operatorsP` are ‘conjugated’ momenta (i.e.
[S`,S`′ ] = 0, [P`,P`′ ] = 0, and [P`,S`′ ] = iδ``′ , with h̄ = 1), the coupling constantsJ`,`′ = J
are between nearest neighbours only, the coupling constantg is introduced so as to measure the
strength of the quantum fluctuations (below it will be called quantum parameter), and, finally,
the spherical fieldµ is introduced to ensure the fulfilment of the constraint〈∑` S2

` 〉 = N .
Here〈· · ·〉 denotes the standard thermodynamic average taken withH.

In the thermodynamic limit the reduced free energyf̃∞(β, g|d) = f∞(β, g|d)/
√
gJ takes

the form†

λf̃∞(t, λ|d) = sup
φ

{
t

(2π)d

∫ π

−π
dq1 . . .

∫ π

−π
dqd

× ln

[
2 sinh

(
λ

2t

√√√√φ + 2
d∑
i=1

(1− cosqi)

)]
− 1

2
φ

}
− d (2.2)

where we have introduced the notations:λ = √g/J is the normalized quantum parameter,
t = T

J
is the normalized temperature andφ = µ

J
− 2d is the shifted spherical field. The

supremum is attained at a solution of the mean-spherical constraint that reads

1= t

(2π)d

∞∑
m=−∞

∫ π

−π
dq1 . . .

∫ π

−π
dqd

1

φ + 2
∑d

i=1(1− cosqi) + b2m2
(2.3)

whereb = 2πt/λ.
Equations (2.2) and (2.3) provide the basis for studying the critical behaviour of the model

under consideration.
The critical behaviour and some finite-size properties of this model have been considered

in [12, 13] for 1< d < 3. Below we present a brief sketch of the derivation of the bulk free
energy ford = 1, 2, 4 at low temperatures.

3. The free energy at low temperatures

By using the identities

ln
sinhb

sinha
= 1

2

∞∑
m=−∞

ln
b2 + π2m2

a2 + π2m2
(3.1)

whereab > 0, a, b are arbitrary real numbers,

ln(a + b) = ln a +
∫ ∞

0
exp(−ax)(1− exp(−bx))dx

x
(3.2)

wherea > 0, a+b > 0, and the Jacobi identity after some algebra at low temperatures (λ
t
� 1)

the expression for the free energy (2.2) can be rewritten in the form

2λf̃∞(t, λ|d) = λa(φ, d)− (φ + 2d)− λs(φ, b, d) (3.3)

† The lattice constant is taken to bea = 1 and the dependence on it will be omitted hereafter.
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where

a(φ, d) = 1

2
√
π

∫ ∞
0

dx

x3/2
exp(−xφ)[1− (exp(−2x)I0(2x))

d ] +
√
φ (3.4)

s(φ, b, d) = 2
∫ ∞

0

dx

x
(4πx)−(d+1)/2 exp(−xφ)R

(
π2

xb2

)
(3.5)

R(x) =
∞∑
m=1

exp(−xm2). (3.6)

I0(x) is a modified Bessel function, andφ in (3.3) is the solution of the corresponding spherical
field equation

∂

∂φ
[λa(φ, d)− (φ + 2d)− λs(φ, b, d)] = 0. (3.7)

The above expressions are valid foranyd.
In the remainder we will consider the dimensionsd = 1, d = 2 andd = 4.
(a) Ford = 1

a(φ, 1) = 1

2
2F1

(
−1

4
,

1

4
, 1,

4

(2 +φ)2

)√
2 +φ (3.8)

s(φ, b,1) = − b

2π2

√
φ

∞∑
m=1

m−1K1

(
2πm
√
φ

b

)
(3.9)

where 2F1is the hypergeometric function andK1(x) is the MacDonald function (second
modified Bessel function).

(b) Ford = 2, andφ � 1

a(φ, 2) ' a(0, 2) +W2(0)φ − 1

6π
φ3/2 (3.10)

s(φ, b,2) = −
(
b

2π

)3 [√
φ

b
Li2

(
exp

(
−2π
√
φ

b

))
+

1

2π
Li3

(
exp

(
−2π
√
φ

b

))]
(3.11)

where

Wd(φ) = 1

2(2π)d

∫ π

−π
dq1 . . .

∫ π

−π
dqd

(
φ + 2

d∑
i=1

(1− cosqi)

)−1/2

(3.12)

is a Watson-type integral,W2(0) ≈ 0.3214, and Lin(x) is the polylogarithmic function.
(c) Ford = 4, andφ � 1

a(φ, 4) ' a(0, 4) +W4(0)φ − 1

2
rφ2 +

1

30π3/2
φ5/2 (3.13)

s(φ, b,4) = −
(
b

2π

)5[
φ

b2
Li 3

(
exp

(
− 2π

√
φ

b

))
+

3
√
φ

2πb
Li4

(
exp

(
− 2π

√
φ

b

))
+

3

4π2
Li 5

(
exp

(
− 2π

√
φ

b

))]
(3.14)

whereW4(0) ≈ 0.1891 and

r =
∫ ∞

0

√
x[exp(−2x)I0(2x)]

4 dx ≈ 0.0677. (3.15)

Now we have the basic expressions needed to analyse the behaviour of the finite-temperature
C-function as defined by equation (1.1).
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Figure 1. The bold curvetLT = 8λ exp(−2π/λ) borders from above the region in thet–λ plane
where the expression for the 1DC-function, given by equation (4.1), is valid. The symbolC↑
means thatC increases in the whole of that region starting fromC = 0 att = 0.

4. The behaviour of theC-function

4.1. The cased = 1

From equations (3.3), (3.8) and (3.9) it is easy to see that the only nonanalyticity in the behaviour
of the free energy exists atφ = 0. Then, for 0< φ � 1 one obtains from equation (1.1), after
some algebra and identifyingv = √gJ , that theC-function† can be written in the following
scaling form:

C(t, λ) =
√
π/2

6
y

1/4
0 exp(−√y0) (4.1)

where the scaling variable isy0 = λ2φ0/t
2. Here

φ0 = 64 exp(−4π/λ). (4.2)

The solutionφ0 of the corresponding spherical field equation for the zero-temperature system
has an essential singularity atλ = 0 (see also [9]). Such type of solution is very well
known from different problems, e.g. one-dimensional anharmonic crystal [14] and the quantum
nonlinear O(N) sigma model in the largeN limit (see, e.g., [15, 16]). In deriving (4.1) we
have been interested in such a behaviour of the nonzero temperature system which approaches
the corresponding zero-temperature behaviour whenT → 0.

As is clear from the above expressions,C is a positive and monotonically increasing
function of the temperature.

The behaviour of theC-function ford = 1 is illustrated in figure 1.

4.2. The cased = 2

We are interested in the behaviour of theC-function around and below the critical point only,
i.e. 0< φ � 1 [12,13]. As is well known, the critical point is atλ = λc = 1/W2(0) ≈ 3.1114
andT = 0. Then, taking into account in equation (1.1) thatn(2) = ζ(3)/(2π) andv = √gJ ,

† For simplicity of notation the dependence on the argumentd of theC-function is omitted hereafter.
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Figure 2. The phase diagram of the model and crossovers for the cased = 2 as a function oft and
the normalized quantum parameterλ. One distinguishes renormalized classical, quantum critical
and quantum disordered regions. Long-range order is present only att = 0 for λ < λc.

for theC-function we obtain from equations (3.10) and (3.11) thatC(t, λ) = X(x), where

X(x) = 1

ζ(3)

[
x(y − y0) +

1

6
(y3/2 − y3/2

0 ) +
√
yLi2(exp(−√y)) + Li3(exp(−√y))

]
(4.3)

with x = π(1/λ−1/λc)λ/t.Herey = y(x), andy0 = y0 (x)are solutions of the corresponding
equations that follow from (4.3) by requiring the first partial derivative of the rhs of (4.3) with
respect toy, andy0, respectively, to be zero. These solutions are

√
y = 2arcsh( 1

2 exp(−2x)) (4.4)

and

√
y0 =

{
−4x λ > λc

0 λ 6 λc.
(4.5)

Equation (4.3) determines theexact scaling function ofC for the cased = 2. From the
above equations one can see the different behaviour ofy in the three regions: (i)renormalized
classical, wherey tends to zero exponentially fast as a function ofx (x � 1); (ii) quantum
critical, wherey = O(1) (for x = O(1)); (iii) quantum disordered, wherey diverges as(4x)2

for x � −1; (y ∼ (χt2)−1,whereχ is the susceptibility of the system, see [12]). The location
of these regions is depicted in figure 2.

The behaviour of theC-function reflects the existence of these three regions.
Whenλ < λc andt → 0, from equations (4.3)–(4.5) it follows that

C(t, λ) ' 1− 1

4ζ(3)
exp[−4π(1− λ/λc)t−1]. (4.6)

One explicitly observes the exponentially small corrections to the limit value ofC = 1 (at
t = 0) that corresponds to massless bosons ind dimensions [3,4].

At λ = λc, C(t, λ) simplifies, by using the Sachdev identity [4], and becomes

C(t, λc) = 4
5. (4.7)

This universalrational number† has been derived for the first time for the quantum nonlinear
O(N) sigma model in the limitN → ∞ [4]. It demonstrates that at the quantum critical
point λ = λc theC-function does not depend on the temperature. The difference from the

† Let us note thatζ(3) is an irrational number, as was pointed out by Apéry in 1978 (see [17]). Therefore, none of
the intermediate steps suggests that a rational number will be the final result.
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Figure 3. The behaviour of the 2DC-function is illustrated forλ = 1.5λc, λ = λc andλ = 0.5λc.

corresponding results in [3] (cf figure 3 in [3] with figure 3 in this paper) is due to the fact
that terms proportional to the difference betweeny andy0 in (4.3) have been neglected there.
The above is justified wheny � 1 (theny andy0 are exponentially close to each other). The
analysis of the corresponding equation shows that the last happens whenx � −1 (i.e.λ > λc)
wherey ∼ y0 ∼ (4x)2, which is the case of the quantum disordered region. In this case it is
easy to see that

C(t, λ) ' 4π

ζ(3)

|1− λ/λc|
t

exp[4π(1− λ/λc)t−1] (4.8)

i.e.C approaches zero exponentially fast in terms of the scaling parameterx. The behaviour
of theC-function in this case is that one of massive free bosons [3].

Let us consider now the monotonicity of theC-function. From (4.3) it follows that
∂C(t, λ)

∂t
= − π

ζ(3)
(y − y0)(1− λ/λc)t−2. (4.9)

Sincey > y0, we conclude thatC is a monotonically increasing function of the temperature
for λ > λc, and a monotonically decreasing function forλ < λc. Within exponentially small-
in-temperature corrections this result coincides, in fact, with the corresponding one for the
QNLσM in the limit N →∞ [3].

The above results for the behaviour of theC-function are illustrated in figure 3.
Finally, it seems worthwhile to mention that, as follows from equation (4.3),theC-function

is a monotonically increasing function of the scaling variablex (see figure 4)for any value of
t (λ/t � 1).

4.3. The cased = 4

For this case, taking into account that in equation (1.1)n(4) = 3ζ(5)/(2π)2 andv = √gJ , for
the C-function we obtain from equations (3.13) and (3.14) thatC(t, λ) = X(x, λ/t), where

X(x, λ/t) = (2π)2

3ζ(5)

[
x(y − y0) +

1

4
r(y2 − y2

0)
λ

t

+
1

(2π)2
[yLi3(exp(−√y)) + 3

√
yLi4(exp(−√y)) + 3Li5(exp(−√y))]

]
(4.10)

with

x = 1

2

(
λ

t

)3(1

λ
− 1

λc

)
(4.11)
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Figure 4. The behaviour of 2DC as a function of the scaling parameterx = π (1/λ− 1/λc) λ/t .

andλc = 1/W4(0) ≈ 5.2882. Herey > 0, andy0 > 0 are solutions of the corresponding
equations that follow from (4.10) by requiring that the first partial derivative of the rhs of (4.10)
with respect toy, andy0, respectively, to be zero. This leads to the following equation fory:

x = −1

2
r
λ

t
y +

1

2(2π)2
[
√
yLi2(exp(−√y)) + Li3(exp(−√y))]. (4.12)

It is easy to see that, for a givent andλ, the solution of the above equation, if it exists, is
unique. Fory0 we get

y0 =
{
−x̃ = −(2t)/(rλ)x λ > λc

0 λ 6 λc.
(4.13)

One observes that in the most general case the functionX, given by equation (4.10), could
not be recast in a scaling form. However, as we will see below, the last is possible in some
subregions of theλ–t plane. We recall that the susceptibilityχ of the system is proportional to
y−1 (if y 6= 0 [18]†), which leads to the conclusion that a nonzero-temperature phase transition
exists at a giventc = tc(λ), wheretc(λ) is given by the equation

tc(λ) = λ
[
(2π)2

ζ(3)

(
1

λ
− 1

λc

)]1/3

(4.14)

(att = tc(λ) one hasy = 0, andy = 0 also fort < tc(λ)). As for thed = 2 case three principal
different regimes exist: (i)renormalized classical(wherey tends to zero exponentially fast as
a function ofλ/t); (ii) quantum critical(wherey tends to zero algebraically as a function of
λ/t or y = O(1)); (iii) quantum disordered(wherey � 1). In order to describe the behaviour
of theC-function below we analyse these three regimes.

(A). Let us first suppose thaty � 1. Then equation (4.12) becomes(
λ

t

)3
[

1

λ
− 1

λc
− ζ(3)

(2π)2

(
t

λ

)3
]
= 1

(4π)2
y ln(y/e)− r λ

t
y. (4.15)

† If y = 0 the relation between the susceptibility andy is a bit more subtle for dimensionalities above the upper
critical dimension; see, e.g. [18], ch 5.
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Obviously, there are two subregimes: (a) when the first term in the right-hand side dominates
and (b) when the second one dominates. The borderline between them is given by

1

2r

(
λ

t

)2
[

1

λc
− 1

λ
+
ζ(3)

(2π)2

(
t

λ

)3
]
= exp

[
−(4π)2r λ

t
+ 1

]
. (4.16)

In theλ–t plane equation (4.16) determines a linet∗(λ) that is exponentially close to (as a
function ofλ/t) the linetc(λ). At t∗(λ) the solution of equation (4.15) is

y ∼ exp

[
−(4π)2r λ

t

]
(4.17)

whereasy = 0 at tc(λ). We conclude that therenormalized classical regimeis observed for
parameters of the system lying in theλ–t plane betweentc(λ) andt∗(λ). In this regime one
could neglect the second term in the rhs of (4.10) which leads to a scaling form of theC-
function with a scaling variablex, defined in (4.11). Att∗(λ) theC-function could not be
rewritten in a scaling form. In the remainder we will see that another scaling variablex̃ can
be defined for the region to the right oft∗(λ). This is due to the fact that in this region the
first term in the rhs of equation (4.12) is of the leading order. Indeed, this is true not only for
case (b) but also for cases (B), wheny = O(1), and (C), wheny � 1, which cases are to be
considered below.

Before passing to the consideration of case (B) let us note that further inspection of
equation (4.15) for case (b) leads to the conclusion that there exists a crossover line

ts(λ) = λ
[
(2π)2

ζ(3)

(
1

λc
− 1

λ

)]1/3

(4.18)

between two regimes whereχ(t, λ) ∼ t−3 andχ(t, λ) ∼ t−2, respectively. This curve is
symmetric to the curvetc(λ) with respect to the lineλ = λc. Let us turn now to case (B).

(B) y = O(1). Then, sincet � 1, equation (4.12) becomes extremely simple and, up to the
leading order coincides with the corresponding equation for the zero-temperature system (see
equation (4.13)). Its solution is

y = 1

r

(
λ

t

)2( 1

λc
− 1

λ

)
≡ −x̃. (4.19)

Sinceχ(t, λ) ∼ (yt2)−1 andy = O(1), one concludes that in this regimeχ(t, λ) ∼ t−2. In a
given sense a formal curvet1(λ) in theλ–t plane which borders the region in whichy = O(1)
can be obtained by simply settingy = 1 in equation (4.19). Summarizing the results from (A)
and (B) we are led to the conclusion that thequantum critical regimeis observed for values of
the parameterst andλ lying in theλ–t plane between the curvest∗(λ) andt1(λ). We see also
that in this regionX(t, λ) = X(x̃), i.e. the scaling is restored with the new scaling variablex̃.

We pass now to case (C).

(C) y � 1. Then one formally receives the same solution as given by equation (4.19) but
nowχ(t, λ) ∼ (1/λc − 1/λ)−1, i.e. it does not depend ont up to exponentially small inλ/t
corrections. We conclude that the region of parameters in theλ–t plane belowt1(λ) determines
thequantum disorderedregion. Again, as in (B), the scaling variable ofC is x̃.

The above results are summarized in figure 5.
The existence of the regions of thermodynamic parameters determined above is reflected

by the corresponding behaviour of theC-function given by equation (4.10).
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Figure 5. The phase diagram of the model and crossovers for the cased = 4. Long-range order
exists below the curvetc. The curvetst is the locus of points in the thermodynamic space where
∂C/∂t = 0. The other curves denote crossovers between different regimes which are described in
the text.

First, for t 6 tc(λ) (i.e. under the existence of a long-range order in the system), since
y = y0 = 0, one immediately obtains from (4.10) thatC = 1†.

Further, fort > tc(λ) taking into account equations (4.13) and (4.12), it is easy to see that

∂C(t, λ)

∂t
= −2π2r

ζ(5)

λ

t2
(y − y0)

[
x̃ +

1

6
r(y + y0)

]
. (4.20)

Sincey > y0 > 0 for the considered region of parametersλ andt , the above equation leads us
to the conclusion that for anyλ < λc theC-function is amonotonically decreasing function of
the temperature. The same is true also forλ = λc andt 6= 0. From the analysis of the solutions
of the equations fory andy0 it becomes clear that for a fixedλ andt > ts(λ) theleading-order
form for bothy andy0 is y = y0 = −x̃ (if one takes into account next-to-leading order terms
then, of course,y > y0). Setting the above expressions fory andy0 in the rectangular brackets
in equation (4.20), we conclude thatC is a monotonically increasing function oft for any
t > ts(λ). It is clear that somewhere betweenλ = λc andts(λ) the derivative of theC-function
changes its sign, i.e. there is a linetst (λ) of stationary points∂C(t, λ)/∂t = 0. One can see
that

tst (λ) = λ
[
(4π)2

ζ(3)

(
1

λc
− 1

λ

)]1/3

. (4.21)

Since the pointλ = λc, t = 0 lies ontst (λ) and at itC = 1, we conclude thatC = 1 at
the whole linetst (λ). It is clear now thatC is a monotonically increasingfunction of t for
t < tst (λ). It is a monotonically decreasingfunction of t for t > tst (λ) as well as for any
(small) t if λ < λc. These results are summarized in figure 6.

5. FSS interpretation

It is interesting to interpret the bulk critical behaviour of theC-function in the context of the FSS
theory by introducing a finite ‘temporal’ dimensionLτ = λ/t. Then, taking into account: (i)

† Note that this result depends only on the existence of long-range order in the system (theny = y0 = 0) and not on
the dimensionalityd. From equations (1.1) and (3.3)–(3.5) and the identity

0
( s

2

)
π−s/2ζ(s) =

∫ ∞
0

R(πs)xs/2
dx

x
Res > 1

we getC = 1.
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Figure 6. The monotonic behaviour ofC as a function of temperature is shown. The symbols
C↑ (C↓) mean thatC is a monotonically increasing (decreasing) function of the temperature. The
number in ellipses show the value ofC at the corresponding curve. In whole long-range-order
region, i.e. below the linetc, C = 1.

the dimensional crossover rule that connects the properties of a givend-dimensional quantum
system and those ones of the corresponding(d+1)-dimensional classical one with the mapping
d → d + 1, L→ Lτ , t → λ; (ii) the Privman and Fisher [19] hypothesis for the free energy of
a finite classical system when the hyperscaling holds (i.e. between the lowerdl and the upper
du critical dimensions of the system), one could make the statement that the free energyf∞ of
a quantum system with dimensionalitydl < d < du (for our modeldl = 1 anddu = 3) should
have the form

f∞(t, λ|d)− f∞(0, λ|d) = T L−dτ Y
(

Lτ

ξ(0, λ)

)
= T 1+dv−dY

(
v

T ξ(0, λ)

)
(5.1)

whereξ(0, λ) is the correlation length of the zero-temperature system,Y is auniversal function
andv = T Lτ . As mentioned in the introduction, one interpretsv as a characteristic velocity
in the system. Recall that in order to have no nonuniversal prefactor in front ofY for classical
systems one considers̃f∞ = βf∞, instead off∞ itself. The normalization of the free energy
in (5.1) simply follows from our choice ofLτ , or, equivalently,v in the system. For the
model considered here the inspection of equations (4.3) and (5.1) shows that the hypothesis
(5.1) is indeed valid with the standard scaling variableLτ/ξ(0, λ) ≡ x = π(1/λ− 1/λc)λ/t ,
C(t, λ) = X(x) = −Y (x)/n(d), andv = √gJ . It is interesting that despite the lack of
hyperscaling atdl = 1 theC-function again can be written as a function ofLτ/ξ(0, λ) (see
equation (4.1)), if one identifiesξ(0, λ) = φ−1/2

0 , whereφ0 is given by equation (4.2). The
cased = 4 > du is much more interesting due to the lack of hyperscaling. In the most
general case theC-function could not even be recast in a FSS form (see equation (4.10)). The
latter is possible exponentially close (inLτ ) to the line of finite-temperature phase transitions
tc(λ),where the modified scaling variable is 2x = Lτ [Lτ/ξ(0, λ)]2 (see equation (4.11)). The
standard scaling variablẽx = Lτ/ξ(0, λ) is restored only for parameters to the right of the
curvet∗(λ) in theλ–t plane (see equation (4.19) and the comments connected with it). This
change of scaling variables fromx to x̃ is a new point within FSS theory. Normally one
observes modified FSS (see [20, 21]) abovedu due to the existence of dangerous irrelevant
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variables in the system. On the other hand, considering the 5D spherical model with one finite
dimension, Barber and Fisher, as early as 1973 [22], stated that the scaling variable should
be the standard one, i.e.Lτ/ξ(0, λ) in our notation. The above results resolve this seeming
contradiction: the scaling variable has to be modified very close to the phase boundary, but is
the standard one a bit away from it. The physical reasoning for that difference is the existence in
the system of a temperature-driven phase transition in addition to the quantum one with respect
to λ at t = 0. To our knowledge all other examples considered previously in the literature of
modified FSS concern finite systems with no (sharp) phase transition in them.

6. Concluding remarks

One generally expects that theC-function increases monotonically when the quantum
fluctuations ‘dominate’ [3]. The real meaning of the term ‘dominate’ turns out to be quite
subtle, as we have demonstrated in the current paper. In fact, we have shown that the region
where theC-function remains monotonically increasing (as a function of temperature) and
the quantum critical region do essentially intersect but donot coincide (see figure 2). This
is one of the results of the present work. The question of where one should look and what
should be understood as the domination of quantum fluctuations is, indeed, very intriguing.
It is a part of the more general problem of aquantitativedescription of the interplay of the
quantum and critical fluctuations. There exist different views on that issue. The standard
one [23,24] is based on the ‘ratio’ between the correlation length and the length of de Broglie.
Another possible approach can be based on the behaviour of theC-function [3,5]. Furthermore,
there is an approach based on the algebra of critical fluctuation operators, due to Verbeure and
Zagrebnov [25], where a measure of the ‘degree of criticality’ is introduced in a mathematically
rigorous way.

In the present work we investigated the behaviour of theC-function ford = 1, 2, 4. The
cased = 1 represents the situation with no phase transition and strong quantum fluctuations,
d = 2—the one when a quantum critical point appears atT = 0, andd = 4—when there is a
line of classical critical points ending up with a zero-temperature (quantum) critical point. In
fact, these are the most typical cases on which the attention in the literature is focused.

Cased = 1. As is to be expected on general grounds, theC-function increases monotonically
as a function of temperature (see figure 1). This reflects the fact that the quantum fluctuations
are strong enough (as is clear from equation (4.2), one cannot considerλ as a small parameter)
and the lack of a critical point. TheC-function obtained here coincides with theC-function
of the massive free bosons (ford = 1) with mass

√
φ0, because of the exponentially small

difference then betweenφ andφ0, i.e. one can considerφ as a fixed parameter in (3.8) and in
(3.9). The general case (for anyd) of free massive bosons actually follows from (3.3)–(3.6)
by consideringφ there as a fixed parameter connected to the massm of bosons (φ ∼ m2 ). For
the last case it is trivial to check that the correspondingC-function is that obtained in [3] (see
equation (3.2) there).

Cased = 2. Figure 2 shows the phase diagram for our model which coincides with the
phase diagram of thed = 1 quantum Ising model, as well as with the nonlinear O(n) sigma
model in the limitn → ∞: see, e.g., Sachdev [23]. As a function of the temperature,C is
monotonically increasing forλ aboveλc, equals4

5 atλ = λc (and thenC does not depend ont)
and is monotonically decreasing forλ belowλc (see figure 3). The lack of overall monotonicity
with respect to the temperature is due to the crossover from classical to quantum behaviour.
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It is clear, that one can indeed consider themonotonicity ofC as a measureof the role the
corresponding fluctuations are playing in a given region of parameters. It is interesting that
C changes its monotonicity, in fact, in themiddleof the quantum critical region. Finally, we
note that it is nevertheless possible to find a (nontrivial) variable, with respect to which the
C-function is monotonic in the wholet–λ plane (see figure 4). This variable is the scaling
variablex = π(1/λ− 1/λc)λ/t .

Cased = 4. The existence of a line of nonzero temperature critical points modifies drastically
the corresponding picture in comparison with thed = 2 case. Now a line of stationary points
tst (λ) appears (see figure 5) which ‘starts’ from(λ = λc, t = 0) and lies to the left ofts(λ).
To the left of tst (λ), C is a nonincreasing function of the temperature (see figure 6). For
λ < λc andt < tc(λ) one hasC = 1, whereas within the region betweentc(λ) andtst (λ) the
C-function is monotonically decreasing as a function of the temperature. To the right oftst (λ)

theC-function becomes a monotonically increasing function of the temperature, being zero
at thet = 0, λ > λc line. At the linestc(λ) andtst (λ) theC-function reaches its maximum
value, i.e. it becomesC = 1. Finally, we would like to mention that, similar to the cased = 2,
it is possible to find two nontrivial parameters such that with respect to both of them theC-
function is monotonically increasing. Such parameters are, e.g., the parametersx andλ/t (see
equation (4.10) and take into account thaty > y0).

Comparing the behaviour of theC-function ford = 1, d = 2 andd = 4 we conclude
that:

(a) Ford = 1 for any fixedλ we have aC-function that is monotonically increasing with
temperature.

(b) Ford = 2 the above is true only forλ > λc.

(c) Ford = 4 theC-function is a monotonically increasing function oft for λ > λc andt
small enough. The monotonicity of theC-function does not change by increasingt only
for λ = λc.
So, the region in the parametric space whereC remains monotonically increasing witht

becomes smaller whend increases. We explicitly see the crucial role the dimensionalityd and
the existence of phase transition, which appears upon increasingd, play in the behaviour of
theC-function as a function oft. Nevertheless, for anyd one can find nontrivial variable(s),
function(s) of the temperature and the parameter controlling the quantum fluctuations, in terms
of whichC is a monotonically increasing function of its variable(s). In close vicinity of the
quantum critical point theC-function is given by a universal scaling function whose properties
can be interpreted in terms of FSS which has to be modified ford = 4.
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