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Abstract. The behaviour of the finite-temperaturefunction, defined by Neto and Fradkin (1993
Nucl. Phys B 400525), is analysed withiné-dimensional exactly solvable lattice model, recently
considered by Vojta (199Bhys. Rev.B 53 710), which is of the same universality class as the
quantum nonlinear @) sigma model in the limiz — oco. The scaling functions of for the
cases! = 1 (absence of long-range orded) = 2 (existence of a quantum critical point),= 4
(existence of a line of finite-temperature critical points that ends up with a quantum critical point)
are derived and analysed. The locations of regions wleikemonotonically increasing (which
depend significantly od) are exactly determined. The results are interpreted within the finite-size
scaling theory that has to be modified tbe= 4.

1. Introduction

The original ZamolodchikouC-theorem is related to zero-temperature quantum systems.

It establishes the existence of a dimensionless fundfioof the coupling constants with
monotonic properties along the renormalization group trajectories [1]. The assumptions
presented in the proof are related with the energy—momentum conservation, the rotational
and translational symmetries, and positivity in a two-dimensional (2D) quantum field theory.
The behaviour of th€'-function reflects the role of the quantum fluctuations and it is useful in
determining the qualitative features of the theory away from the criticality. At the fixed points

it takes the value of the central charge of the corresponding conformal field theory. Since
the basic assumptions underlying tGetheorem are not only specific to two dimensions,
considerable interest exists in generalization of the Zamolodchikov result for dimensionalities
different from two as well as for nonzero temperatures [2—6]. Earlier efforts (see [2] and
references therein) have been devoted to finding a version of tieeorem valid in four
dimensions. There the approach was based on a careful investigation of the form of the trace
of the energy—momentum tensor, written in terms of finite local composite operators. Despite
being able to write expressions for the Zamolodchikov equations faF thenction, similar to

the case of two dimensions, it turns out that it is not possible to demonstrate the monotonicity
property. Let us note also the fact that the 3D analogue of central charge [7] is not equivalent
to the universal number characterizing the size dependence of the free energy at the critical
point [4] (which is always the case in 2D conformal field theory). This fact indicates that a
straightforward generalization of the Zamolodchikéxheorem is not to be expected for a
generall. See also [5], where different approaches to the problem have been offered and where
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it was shown that no direct relations exist between the ‘finite-temperétibeorem’ and the
ZamolodchikovC-theorem at zero temperature. In the present study an approach, proposed
by Netto and Fradkin [3] (in some sense a thermodynamic one), for finding a candidate for the
C-function will be considered. In [3] the following dimensionless function is defined:

d
C(B.g.ald) = —ﬂ"”%[f(ﬂ, g ald) — f(co, g,ald)] (1.1

whereg is the inverse temperaturg & 1/ T) with the Boltzman constait; = 1, g is a set of
dimensionful coupling constantg,co, g, ald) = Eo(g, ald) is the zero-temperature energy
density, i.e. the energy of the ‘infinite’ in the inverse temperature systéf,g, a|d) is the full
free-energy density (per unit volume) of the system, aiglithe characteristic length scale of
the lattice. Here (d) is a positive real number (which depends only on the dimensionatity
the system) andis the characteristic velocity (e.g. the velocity of quasiparticles) in the system.
The functionC (8, g, a|d) is considered to be thedimensional nonzero temperature extension
of the Zamolodchiko\C-function. It is supposed to h@ositive and, in the regions where the
quantum fluctuations dominatepr@notonically increasing function of the temperature[3]

the numbersi(d) = I'((d + 1)/2)¢(d + 1)/7@*D/2 for bosons {(x) is the Riemann zeta
function, " (x) is the gamma function) andd) = I'((d + 1)/2)¢(d + 1)(2 — 21-¢) /g @*D/2

for fermions have been suggested. Obviously, the exact choigé&lofdoes not effect the
monotonicity properties of th€-function. Functions analogous to the one defined in (1.1)
have also been discussed in [4—6].

For a generadl the existence of phase transitions in the system, as well as the interplay
between the quantum and classical fluctuations, makes the analysis of the behaviour of the
C-function difficult from a general point of view. That is why, for asiy£ 1 the properties of
C have been considered on the examples of concrete models: the free massive field theories
(for anyd) [3], the Ising model in a transverse field (= 1) [3] and the quantum nonlinear
sigma model (QNEM) in the limit N — oo andd = 2 [3,4]. (Recently, the value of the
C-function at the critical point as a function af, 1 < d < 3, has been calculated in [6] for
that model.)

In the present paper we will consider tielependence of the monotonicity property of
the C-function within the framework of an exactly solvable lattice model. We will explicitly
demonstrate the crucial role that the existence of a quaritus Q) and/or classicall{ # 0)
critical points plays for the behaviour @f in different regions of the phase diagram in the
plane temperature—the parameter controlling the quantum fluctuations.

The paper is organized as follows. In section 2 we briefly describe the model and in
section 3 present the basic exact analytical expressions for the free energy of the bulk system
at nonzero temperature. Section 4 contains the analysis of the behaviour@®fftinetion
in dimensions one, two and four in different regimes of the parametric space of the model.
Section 5 presents a finite-size scaling (FSS) interpretation of the results. The paper closes
with concluding remarks given in section 6.

2. The model

The model we consider describes a magnetic ordering due to the interaction of quantum
spins. It dates back to the work of G Obermair (1972) [8], in which a canonical quantization
for a dynamical version of the spherical model was proposed. Later Srednicki [9], using
the Feynman-path integral formalism, extracted from a 2D mean spherical model a quantum
mechanical Hamiltonian which is a 1D version of the model proposed by Obermair. Henkel
and Hoeger [10] generalized that resultdalimensions. Recently, [11] has renewed the
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interest in this scheme in the context of quantum phase transitions at zero temperature. The
Hamiltonian has the following form [11]:

1 1
H= 58 szz 5 Z JooSeSe + % ZSZZ (2.1)
] o« ¢

where S, are spin operators at site the operatorsP, are ‘conjugated’ momenta (i.e.
[Se, Se] = 0,[Pe, Pe] = 0,and [Py, S¢'] = i8¢, With i = 1), the coupling constantg »» = J
are between nearest neighbours only, the coupling congtaititroduced so as to measure the
strength of the quantum fluctuations (below it will be called quantum parameter), and, finally,
the spherical fielde is introduced to ensure the fulfilment of the constrgt, S2) = N.
Here(. - -) denotes the standard thermodynamic average takeriyvith

In the thermodynamic limit the reduced free enefgy(B, gld) = f~ (B, gld)//gJ takes
the formt

T

~ t 7T
Afoo(t, A|d) = Srp{(Zﬂ)"/n dgi... B dga

e 4 1
x In [2 smh(g ¢+ 2;(1— COSq,»)>] - Ed)} —d (2.2)

where we have introduced the notations= ./g/J is the normalized quantum parameter,
t = § is the normalized temperature apd= 4 — 2d is the shifted spherical field. The
supremum is attained at a solution of the mean-spherical constraint that reads

t ad ™ ™ 1
1=—— d / d
(2m)d Z x 7 — Qd¢+22f:1(l—c05qi)+b2m2

m=—oo Y ™

(2.3)

whereb = 2rt /.

Equations (2.2) and (2.3) provide the basis for studying the critical behaviour of the model
under consideration.

The critical behaviour and some finite-size properties of this model have been considered
in [12,13] for 1 < d < 3. Below we present a brief sketch of the derivation of the bulk free
energy ford = 1, 2, 4 at low temperatures.

3. The free energy at low temperatures

By using the identities

sinhb 1 & b2 + 72m?
== - 1
sinha 2 m; a?+ m2m? 3.1)
whereab > 0, a, b are arbitrary real numbers,
o dx
In(a+b) =Ina+ / exp(—ax)(1 — exp(—bx))— (3.2
0 X

wherea > 0, a+b > 0, and the Jacobi identity after some algebra atlowtemperatf,ﬁjrﬁsi)
the expression for the free energy (2.2) can be rewritten in the form

2% foo(t, A|d) = ra(¢p, d) — (¢ +2d) — rs(¢, b, d) (3.3)

T The lattice constant is taken to be= 1 and the dependence on it will be omitted hereafter.
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where

1 > d
a.d) = 5 | S em—rolt - @200 1+ Vo (34)

o0 2
s(¢,b,d) =2/ 7(4 x) "2 exp(— x¢)R<”bz> (3.5)
0

R(x) = i exp(—xm?). (3.6)

Io(x) is amodified Bessel function, agdn (3.3) is the solution of the corresponding spherical
field equation

a
ﬁ[)\a(dxd) —(p+2d) — As(¢p,b,d)] =0. (3.7)

The above expressions are valid &yd.
In the remainder we will consider the dimensiehs- 1, d = 2 andd = 4.
(@ Ford =1

1 11 4
a(g,1) = 2F1( 2 Z»ly W) V2+¢ (3.8)
s(¢. b, 1) = —%ﬂZm*lKl (2”m‘/‘$> (3.9)
T m=1 b

where ; Fiis the hypergeometric function ankl;(x) is the MacDonald function (second
modified Bessel function).
(b) Ford = 2, and¢ <« 1

a(¢,2) ~ a(0,2) + W, (0)p — %«/ﬁ/z (3.10)

s(¢,b,2)=—(2];)3[\2$u2<exp( 27T‘f>>+2L| ( p( 27{?))] (3.11)

where

-1/2

1 T
Wa(@) = m/_n dql.../_ﬂ dgq <¢>+22(1— COSq,)) (3.12)

is a Watson-type integral)»(0) ~ 0.3214, and Lj(x) is the polylogarithmic function.
(c) Ford =4, and¢ « 1

a(p, 4) ~ a(0,4) + Wa(0)¢ — %nﬁz + »°? (3.13)

3073/2

s(¢.b,4) = —<21;)5[1?2Li3<exp( - 2”\/5>>

N 2nf N
+ﬂL|4<exp< )) 4—L| (exp(— b ))] (3.14)
whereW,(0) ~ 0.1891 and

r= / Jx[exp(—2x)Io(2x)]* dx ~ 0.0677. (3.15)

Now we have the basic expressions needed to analyse the behaviour of the finite-temperature
C-function as defined by equation (1.1).
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t

Ccl<1

Figure 1. The bold curve,r = 8i exp(—27/A) borders from above the region in the. plane
where the expression for the 1D-function, given by equation (4.1), is valid. The symkiof
means thaC increases in the whole of that region starting frén= 0 atr = 0.

4. The behaviour of theC-function

4.1. Thecasd =1

From equations (3.3), (3.8) and (3.9) itis easy to see that the only nonanalyticity in the behaviour
of the free energy exists a@t= 0. Then, for 0O< ¢ <« 1 one obtains from equation (1.1), after
some algebra and identifying= /g J, that theC-functiont can be written in the following
scaling form:

/2
Ct,\) = ’%yé/“exp(—M) (4.1)

where the scaling variable ig = A%¢o/2. Here
¢o = 64 exg—4m/A). 4.2)

The solutiongpg of the corresponding spherical field equation for the zero-temperature system
has an essential singularity at = 0 (see also [9]). Such type of solution is very well
known from different problems, e.g. one-dimensional anharmonic crystal [14] and the quantum
nonlinear @N) sigma model in the larg® limit (see, e.g., [15, 16]). In deriving (4.1) we
have been interested in such a behaviour of the nonzero temperature system which approaches
the corresponding zero-temperature behaviour wihes 0.

As is clear from the above expressiors,is a positive and monotonically increasing
function of the temperature.

The behaviour of th€-function ford = 1 isillustrated in figure 1.

4.2. The casd = 2

We are interested in the behaviour of ti€unction around and below the critical point only,
i.e.0< ¢ <« 1[12,13]. Asiswell known, the critical pointis at= A. = 1/W,(0) ~ 3.1114
andT = 0. Then, taking into account in equation (1.1) thé?) = ¢(3)/(27) andv = /g J,

1 For simplicity of notation the dependence on the argunieftthe C-function is omitted hereafter.
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RENORMALIZE QUANTUM
CLASSICAL DISORDER
A=A

Figure 2. The phase diagram of the model and crossovers for thedcas® as a function of and
the normalized quantum parameterOne distinguishes renormalized classical, quantum critical
and quantum disordered regions. Long-range order is present andy @tfor » < ..

for the C-function we obtain from equations (3.10) and (3.11) ffi&t, A) = X (x), where

1 1 . .
X(x) = @ [x(y — yo) + 6<y3/2 —y%) + yLia(exp(—/y)) + Lm(exp(—ﬁ))} (4.3)

withx = w(1/A—1/1.)A/t.Herey = y(x),andyg = yp (x) are solutions of the corresponding
equations that follow from (4.3) by requiring the first partial derivative of the rhs of (4.3) with
respect toy, andyyg, respectively, to be zero. These solutions are

VY = 2arcstt3 exp(—2x)) (4.4)
and
—4x A> Ao
Vo = {0 A< e (45)

Equation (4.3) determines thexact scaling function of for the cased = 2. From the
above equations one can see the different behaviowirothe three regions: (fenormalized
classical wherey tends to zero exponentially fast as a functioncqfc > 1); (ii) quantum
critical, wherey = O(1) (for x = O(1)); (iii) quantum disorderedvherey diverges ag4x)?
forx « —1; (y ~ (x1?)~1, wherey is the susceptibility of the system, see [12]). The location
of these regions is depicted in figure 2.

The behaviour of th€ -function reflects the existence of these three regions.

Wheni < A. andt — 0, from equations (4.3)—(4.5) it follows that

~1- Y expldr(l— -1
C(t,k)_1—4§(3) exp[—4r (1 — A/A)t ). (4.6)

One explicitly observes the exponentially small corrections to the limit value ef 1 (at
t = 0) that corresponds to massless bosonadimensions [3, 4].
At 1 = A, C(¢, A) simplifies, by using the Sachdev identity [4], and becomes

C(t,he) = 2. 4.7

This universarational numbert has been derived for the first time for the quantum nonlinear
O(N) sigma model in the limitN-— oo [4]. It demonstrates that at the quantum critical
point . = A. the C-function does not depend on the temperature. The difference from the

t Let us note thag(3) is an irrational number, as was pointed out byéApin 1978 (see [17]). Therefore, none of
the intermediate steps suggests that a rational number will be the final result.
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Figure 3. The behaviour of the 2I0-function is illustrated fon. = 1.5A., A = A, andx = 0.5.

corresponding results in [3] (cf figure 3 in [3] with figure 3 in this paper) is due to the fact
that terms proportional to the difference betweesndyyg in (4.3) have been neglected there.
The above is justified when 3> 1 (theny andyg are exponentially close to each other). The
analysis of the corresponding equation shows that the last happenswhenl (i.e.x > 1.)
wherey ~ yg ~ (4x)?, which is the case of the quantum disordered region. In this case it is
easy to see that

4 11— A/Ac|
¢33 t

i.e. C approaches zero exponentially fast in terms of the scaling parameTdre behaviour
of the C-function in this case is that one of massive free bosons [3].

Let us consider now the monotonicity of tliefunction. From (4.3) it follows that

aC(t, L) T _ 5
o = §(3)(y yo(L—A/r)t™". (4.9)

Sincey > yg, we conclude tha€ is a monotonically increasing function of the temperature
for » > A., and a monotonically decreasing function fox .. Within exponentially small-
in-temperature corrections this result coincides, in fact, with the corresponding one for the
QNLoM in the limit N — oo [3].

The above results for the behaviour of tidunction are illustrated in figure 3.

Finally, it seems worthwhile to mention that, as follows from equation (th&); -function
is a monotonically increasing function of the scaling variablgsee figure 4jor any value of
t (At > 1).

C(t, 1) ~ expl4r (1 —1/r)t™Y (4.8)

4.3. The casd = 4

For this case, taking into account that in equation ((&) = 3¢(5)/(2n)2 andv = /g7, for
the C-function we obtain from equations (3.13) and (3.14) th@t A) = X (x, A/t), where

¥ “_(271)2 B +1 2 ok
(x,1/1) = %) x(y — yo) Zr(y yo);
1 . . .
e [yLis(exp(—/y)) + 3/yLia(exp(—y/y)) + 3Lls(exp(—ﬁ))]] (4.10)
with

Y



7064 D M Danchev ad N S Tonchev

L
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1 2

Figure 4. The behaviour of 20C as a function of the scaling parametes 7 (1/A — 1/A.) A/t.

andi. = 1/W4(0) ~ 5.2882. Herey > 0, andyy > 0 are solutions of the corresponding
equations that follow from (4.10) by requiring that the first partial derivative of the rhs of (4.10)
with respect toy, andyy, respectively, to be zero. This leads to the following equatiory for
A . 1

P e R

2' 177 202n)2
It is easy to see that, for a giverand, the solution of the above equation, if it exists, is
unique. Foryy we get

{ —%=—20)/rM)x A > e
Yo =

X =

[V/yLiz(exp(—/y)) + Liz(exp(—y/y))]. (4.12)

4.13
0 A< A, ( )

One observes that in the most general case the funatiagiven by equation (4.10), could

not be recast in a scaling form. However, as we will see below, the last is possible in some
subregions of the— plane. We recall that the susceptibiljyof the system is proportional to
y~L(if y # 0[18]1), which leads to the conclusion that a nonzero-temperature phase transition
exists at a givem. = ¢.(A), wherer.(1) is given by the equation

o Jen? /1 1\]"®
“‘m_k[ 16 (TK-H @19

(att =1.(0) onehay = 0, andy = O also forr < t.(1)). Asforthed = 2 case three principal
different regimes exist: (ilenormalized classicdwherey tends to zero exponentially fast as
a function ofi/¢); (i) quantum critical(wherey tends to zero algebraically as a function of
A/t ory = O(1)); (i) quantum disordere@vherey > 1). In order to describe the behaviour
of the C-function below we analyse these three regimes.

(A). Letus first suppose that« 1. Then equation (4.12) becomes

N N AY ! A
<?> |:)»_)»c_(271)2 (X) = Gy NS =y (4-13)

t If y = 0 the relation between the susceptibility ands a bit more subtle for dimensionalities above the upper
critical dimension; see, e.g. [18], ch 5.
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Obviously, there are two subregimes: (a) when the first term in the right-hand side dominates
and (b) when the second one dominates. The borderline between them is given by

1/AV[1 1@ (1) 5, A

2r<t> [xc PP (A) exp[ @ } (4.10)
In the A— plane equation (4.16) determines a lirfé)) that is exponentially close to (as a
function of/¢) the liner.(1). At #*(1) the solution of equation (4.15) is

y~ exp[—(4n)2rﬂ (4.17)

whereasy = 0 atz.(1). We conclude that theenormalized classical regimie observed for
parameters of the system lying in ther plane betweemn.(1) andz*(1). In this regime one
could neglect the second term in the rhs of (4.10) which leads to a scaling form Gt the
function with a scaling variable, defined in (4.11). At*(1) the C-function could not be
rewritten in a scaling form. In the remainder we will see that another scaling vasiatzda
be defined for the region to the right of(A). This is due to the fact that in this region the
first term in the rhs of equation (4.12) is of the leading order. Indeed, this is true not only for
case (b) but also for cases (B), wher= O(1), and (C), whery > 1, which cases are to be
considered below.

Before passing to the consideration of case (B) let us note that further inspection of
equation (4.15) for case (b) leads to the conclusion that there exists a crossover line

@1 1\
o= (3] o

between two regimes wheng(r, ») ~ t~3 and x (¢, ) ~ t~2, respectively. This curve is
symmetric to the curve.(A) with respect to the ling@ = A.. Let us turn now to case (B).

(B) y =0O(1). Then, since « 1, equation (4.12) becomes extremely simple and, up to the
leading order coincides with the corresponding equation for the zero-temperature system (see
equation (4.13)). Its solution is

Y-

Sincey (¢, A) ~ (yt?)~tandy = O(1), one concludes that in this regimg?, A) ~ r=2. In a
given sense a formal curvg)) in theA— plane which borders the region in whigh= O(1)
can be obtained by simply settizg= 1 in equation (4.19). Summarizing the results from (A)
and (B) we are led to the conclusion that theantum critical regimés observed for values of
the parametersanda lying in theA— plane between the curveg1) andr;(A). We see also
that in this regionX (z, 1) = X (%), i.e. the scaling is restored with the new scaling variable
We pass now to case (C).

(C)y > 1. Then one formally receives the same solution as given by equation (4.19) but
now x (t, A) ~ (1/x. — 1/4)71, i.e. it does not depend arup to exponentially small in /¢
corrections. We conclude that the region of parameters iithplane below; (1) determines
thequantum disorderedegion. Again, as in (B), the scaling variable®fis x.

The above results are summarized in figure 5.

The existence of the regions of thermodynamic parameters determined above is reflected
by the corresponding behaviour of thefunction given by equation (4.10).
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Figure 5. The phase diagram of the model and crossovers for thectcasd. Long-range order
exists below the curve.. The curver,; is the locus of points in the thermodynamic space where
9C/dr = 0. The other curves denote crossovers between different regimes which are described in
the text.

First, forr < 7.(0) (i.e. under the existence of a long-range order in the system), since
y = yo = 0, one immediately obtains from (4.10) that= 1t.
Further, forr > 7.()) taking into account equations (4.13) and (4.12), it is easy to see that

A 2m%r A 1

8C;t[, b ;5) 20— [i et yo)] . (4.20)
Sincey > yo > 0 for the considered region of parametei@ndz, the above equation leads us
to the conclusion that for any < 1. the C-function is amonotonically decreasing function of
the temperatureThe same is true also far= 1. andt # 0. From the analysis of the solutions
of the equations fop andyy it becomes clear that for a fixedandr > 7,(1) theleading-order
form for bothy andyg is y = yg = —X (if one takes into account next-to-leading order terms
then, of coursey > yp). Setting the above expressions faandyy in the rectangular brackets
in equation (4.20), we conclude thétis a monotonically increasing function offor any

t > t;()). ltis clear that somewhere betwekenr= ). andz, (1) the derivative of th&-function
changes its sign, i.e. there is a ling(A) of stationary point9C (¢, A)/dt = 0. One can see

that
(@1 1\
t”(”_k[z(s) (E‘Xﬂ ' (4.21)

Since the point. = A.,t = 0 lies ont, (1) and at itC = 1, we conclude that = 1 at
the whole linet,, (1). It is clear now thatC is amonotonically increasindgunction of ¢ for
t < ty(A). It is amonotonically decreasinfunction oft for r > #,,(1) as well as for any
(small)¢ if A < A.. These results are summarized in figure 6.

5. FSS interpretation
Itisinteresting to interpret the bulk critical behaviour of hidunction in the context of the FSS
theory by introducing a finite ‘temporal’ dimensidn = A/z. Then, taking into account: (i)

T Note that this result depends only on the existence of long-range order in the system+thgn= 0) and not on
the dimensionality/. From equations (1.1) and (3.3)—(3.5) and the identity

o0
r (1) 72 (s) = f Rersye 2% Res > 1
2 0 X

we getC = 1.
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(c=D (c=0> Ao
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Figure 6. The monotonic behaviour af as a function of temperature is shown. The symbols
C* (C|) mean thatC is a monotonically increasing (decreasing) function of the temperature. The
number in ellipses show the value 6fat the corresponding curve. In whole long-range-order
region, i.e. below the line., C = 1.

the dimensional crossover rule that connects the properties of adygtignensional quantum
system and those ones of the correspondifigl)-dimensional classical one with the mapping
d—>d+1 L — L., t— A;(ii) the Privman and Fisher [19] hypothesis for the free energy of
a finite classical system when the hyperscaling holds (i.e. between thedpard the upper

d, critical dimensions of the system), one could make the statement that the free gnesfyy

a quantum system with dimensionality< d < d, (for our modeld; = 1 andd,, = 3) should
have the form

L
ot Ad) = foo(O,Ald) = TLTY !

1+d  —d v
=T Y (TS(O, k)) (5.1)
whereg (0, ) is the correlation length of the zero-temperature sysieimauniversal function

andv = TL.. As mentioned in the introduction, one interpretas a characteristic velocity

in the system. Recall that in order to have no nonuniversal prefactor in frahfafclassical
systems one considefs, = B/, instead off,, itself. The normalization of the free energy

in (5.1) simply follows from our choice oL, or, equivalentlyy in the system. For the
model considered here the inspection of equations (4.3) and (5.1) shows that the hypothesis
(5.1) is indeed valid with the standard scaling variabl¢& (0, A) = x = 7w(1/A — 1/A)A/t,

C(t,\) = X(x) = —Y(x)/n(d), andv = /gJ. ltis interesting that despite the lack of
hyperscaling at, = 1 theC-function again can be written as a functionof/£(0, A) (see
equation (4.1)), if one identifies(0, 1) = qbgl/z, wheregyg is given by equation (4.2). The
cased = 4 > d, is much more interesting due to the lack of hyperscaling. In the most
general case th€-function could not even be recast in a FSS form (see equation (4.10)). The
latter is possible exponentially close (in) to the line of finite-temperature phase transitions
t.(A),where the modified scaling variable is 2 L.[L./£(0, 1)]? (see equation (4.11)). The
standard scaling variable = L./£(0, A) is restored only for parameters to the right of the
curvet*(1) in the A— plane (see equation (4.19) and the comments connected with it). This
change of scaling variables fromto x is a new point within FSS theory. Normally one
observes modified FSS (see [20, 21]) abdyelue to the existence of dangerous irrelevant
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variables in the system. On the other hand, considering the 5D spherical model with one finite
dimension, Barber and Fisher, as early as 1973 [22], stated that the scaling variable should
be the standard one, i.&../£(0, A) in our notation. The above results resolve this seeming
contradiction: the scaling variable has to be modified very close to the phase boundary, but is
the standard one a bitaway fromt. The physical reasoning for that difference is the existence in
the system of a temperature-driven phase transition in addition to the quantum one with respect
tox atr = 0. To our knowledge all other examples considered previously in the literature of
modified FSS concern finite systems with no (sharp) phase transition in them.

6. Concluding remarks

One generally expects that th@é-function increases monotonically when the quantum
fluctuations ‘dominate’ [3]. The real meaning of the term ‘dominate’ turns out to be quite
subtle, as we have demonstrated in the current paper. In fact, we have shown that the region
where theC-function remains monotonically increasing (as a function of temperature) and
the quantum critical region do essentially intersect buhdbcoincide (see figure 2). This
is one of the results of the present work. The question of where one should look and what
should be understood as the domination of quantum fluctuations is, indeed, very intriguing.
It is a part of the more general problem ofjaantitativedescription of the interplay of the
quantum and critical fluctuations. There exist different views on that issue. The standard
one [23,24] is based on the ‘ratio’ between the correlation length and the length of de Broglie.
Another possible approach can be based on the behaviour@ffilnection [3,5]. Furthermore,
there is an approach based on the algebra of critical fluctuation operators, due to Verbeure and
Zagrebnov [25], where a measure of the ‘degree of criticality’ is introduced in a mathematically
rigorous way.

In the present work we investigated the behaviour of@kieinction ford = 1, 2, 4. The
cased = 1 represents the situation with no phase transition and strong quantum fluctuations,
d = 2—the one when a quantum critical point appears at 0, andd = 4—when there is a
line of classical critical points ending up with a zero-temperature (quantum) critical point. In
fact, these are the most typical cases on which the attention in the literature is focused.

Cased = 1. Asistobe expected on general groundshinction increases monotonically

as a function of temperature (see figure 1). This reflects the fact that the quantum fluctuations
are strong enough (as is clear from equation (4.2), one cannot cohsidersmall parameter)

and the lack of a critical point. Th€-function obtained here coincides with tefunction

of the massive free bosons (fdr= 1) with mass,/¢o, because of the exponentially small
difference then betweegf andey, i.e. one can consider as a fixed parameter in (3.8) and in
(3.9). The general case (for ady of free massive bosons actually follows from (3.3)—(3.6)

by considering there as a fixed parameter connected to the masfdbosons$ ~ m?). For

the last case it is trivial to check that the correspondirfyinction is that obtained in [3] (see
equation (3.2) there).

Cased = 2. Figure 2 shows the phase diagram for our model which coincides with the
phase diagram of thé = 1 quantum Ising model, as well as with the nonlinean 3sigma

model in the limith — oco: see, e.g., Sachdev [23]. As a function of the temperatris,
monotonically increasing for abovei,., equals‘—g atl = A, (and therC does not depend ai

and is monotonically decreasing fobelowa.. (see figure 3). The lack of overall monotonicity

with respect to the temperature is due to the crossover from classical to quantum behaviour.
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It is clear, that one can indeed consider thenotonicity ofC as a measuref the role the
corresponding fluctuations are playing in a given region of parameters. It is interesting that
C changes its monotonicity, in fact, in tmeiddleof the quantum critical region. Finally, we
note that it is nevertheless possible to find a (nontrivial) variable, with respect to which the
C-function is monotonic in the whole-x plane (see figure 4). This variable is the scaling
variablex = w(1/A — 1/A)A/t.

Caseal = 4. The existence of aline of nonzero temperature critical points modifies drastically
the corresponding picture in comparison with the- 2 case. Now a line of stationary points
t,,()) appears (see figure 5) which ‘starts’ fraqgn = A, + = 0) and lies to the left of; ().
To the left of#,, (), C is a nonincreasing function of the temperature (see figure 6). For
A < Acandr < t.(A) one hasC = 1, whereas within the region betweerir) andz,, (1) the
C-function is monotonically decreasing as a function of the temperature. To the righa.of
the C-function becomes a monotonically increasing function of the temperature, being zero
atther = 0, A > A. line. At the linesr.(A) andz,,; (1) the C-function reaches its maximum
value, i.e. itbecome§ = 1. Finally, we would like to mention that, similar to the cake- 2,
it is possible to find two nontrivial parameters such that with respect to both of the@the
function is monotonically increasing. Such parameters are, e.g., the paramatebs/ s (see
equation (4.10) and take into account that yp).

Comparing the behaviour of thé-function ford = 1, d = 2 andd = 4 we conclude
that:

(a) Ford = 1 for any fixed\ we have aC-function that is monotonically increasing with
temperature.

(b) Ford = 2 the above is true only for > A..

(c) Ford = 4 theC-function is a monotonically increasing functionofor A > A. and¢
small enough The monotonicity of the-function does not change by increasinanly
for A = A..

So, the region in the parametric space wh&neemains monotonically increasing with
becomes smaller whehincreases. We explicitly see the crucial role the dimensiondlétyd
the existence of phase transition, which appears upon incredsiplgy in the behaviour of
the C-function as a function of. Nevertheless, for any one can find nontrivial variable(s),
function(s) of the temperature and the parameter controlling the quantum fluctuations, in terms
of which C is a monotonically increasing function of its variable(s). In close vicinity of the
quantum critical point th€'-function is given by a universal scaling function whose properties
can be interpreted in terms of FSS which has to be modified fer4.
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